
Compositional Pattern Producing GAN

Luke Metz
Google Brain

lmetz@google.com

Ishaan Gulrajani
Google Brain

igul@google.com

Introduction In this work, we explore generative models of images as tools for creative work.
Typically generative models have the goal of faithfully approximating a data distribution. In the
creative setting, we also want the generating process to be manually controllable in ways that let us
achieve visually interesting images, even if this makes them less similar to the original data.

Generative Adversarial Networks (GANs) are a class of methods capable of generating photorealis-
tic images [7, 16, 4]. They posit a generative model and use a discriminator network to distinguish
generated samples from real data. The generator uses gradients from the discriminator to learn how
to generate realistic data. Besides generating photorealistic images, GANs have the useful property
that they permit any generator structure which allows sampling, which we leverage in this work.

Typically, the generator of a GAN transforms a latent vector z into an image at a fixed resolution
using strided transposed convolution [14]. There has been work on generators which output images
at multiple resolutions by generating at a low resolution and progressively upsampling [6, 3, 16].
In this work, we propose an alternate generator parameterization built on Compositional Pattern
Producing Networks (CPPN) [15] which is capable of directly generating images at any resolution,
including resolutions other than the ones it was trained at.

A CPPN can be seen as a neural network that takes input spatial coordinates x, y and outputs a color
at that location. To generate an image, we use a rendering process similar to how cameras capture
images: we project a grid of pixels over the field to be captured and compute the integral of the area
enclosed by each pixel. In this work, we are interested in modeling a distribution of images rather
than a single image, so we condition our CPPN on a latent variable z. This work is an extension of
ideas from [1, 2] where both VAE and GAN CPPN models were explored. We extend their work
with recent GAN innovations and show further applications of the technique.

Using CPPNs for image generation in this way has a number of benefits. First, these models are able
to generate the same image at arbitrary resolutions because the resolution is entirely a property of the
rendering process and not the model. Second, we are no longer bound to generating an image in its
entirety; instead, we can render arbitrary crops of an image (again at arbitrary resolution). Finally,
parameterizing the generator in this way enables easy customization of the generated images: we
observe that the choice of network architecture in CPPNs has interpretable effects on properties of
the resulting images when rendered at higher resolutions.

Most prior GAN work tries to learn a generator which approximates a data distribution. This pro-
duces realistic images, but our goal is to produce images that are visually interesting, sometimes
in ways that are unrealistic. To achieve this, we simultaneously train the generator to match mul-
tiple (potentially conflicting) image distributions at different scales. This way, we can control the
structure of our generated images independently at each scale.

Effect of different generator parameterizations To demonstrate the effect of the generator
parameterization on the generated images, we train multiple different generated architectures and
present images in Figure 1. We see clear differences in the high-resolution images but not the
low-resolution ones.

Multi-resolution training Next, we explore constraints from the discriminator. From the Ima-
geNet [5] dataset, we construct two datasets which we train the generator to match simultaneously:
the full images resized to 32× 32, and 32× 32 crops of 64× 4-resized images. The generator must
learn to generate realistic structure at both scale levels to succeed. We present results in Figure 2.



Figure 1: Models trained on 32x32 renderings of CIFAR-10 [12] images. Shown are the native
resolution as well as rendering at 128x128. Each block consists of a different projection activation
function used. Left: Sine waves. Center: Triangle waves. Right: Square waves. Sine waves yield
smoother, higher resolution images whereas square and triangle yield harder edges. Images rendered
at training resolution look similar as they are minimizing the same adversarial divergence.

Figure 2: Left: 32×32 rendering matching the distribution from ImageNet samples. Center: 32×32
renderings matching crops taken from a 64×64 ImageNet samples. These samples represent higher
detail textures. Right: 128× 128 renderings that merge the global structure and the more fine grain
texture information.

Training against different distributions at different scales In addition to matching the same
distribution at different resolutions, we can also match very different distributions at different scales
to guide the output. First, we match the full canvas, a box of size (1, 1), to 32 × 32 CIFAR-10
images. Second, we match crops of size (0.1, 0.1), to an artificial dataset consisting of randomly
generated circles. The generator is shared and minimizes a weighted sum of these two divergences.
In this test, the generator is also augmented with higher frequency sin and cos features squared to
make learning circular features easier. The results are in figure 3. We observe circular patterns in
the high resolution images.

Figure 3: Left-Top: Training images and samples rendered at 32×32 from full image crops. Gener-
ated images are smooth and globally consistent. Left-Bottom: Training images for texture distribu-
tion and 32× 32 renders of generated patches. While still dissimilar, the generated samples contain
circular patterns that more closely match the target texture distribution. Center: 128× 128 renders.
These renders show the global structure as well as how the circular patterns are integrated into this
structure to create an interesting resulting image. Right: template from which we picked patches of
examples. Right: A texture generated from a picture of tomatoes tiled 2× 2 times.

Texture synthesis A common task in compute graphics is texture synthesis: given an image,
produce a tileable image which resembles the original image in any local region. Enforcing this
constraint is easy given the parameterization of our CPPN network. We can simply use as input x, y
positions mapped through a periodic function. Taking this approach and training on arbitrary crops
lets us generate a tile-able textures. Results are in figure 3.
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Appendix
A Method

Much like in standard GAN training, we attempt to minimize an objective defined as a min max
game. A discriminator network estimates some divergence between two distributions and a generator
minimizes this estimate. In this work, the distributions in question are images formed by a grid of
pixels and we minimize the WGAN-GP objective from [8]. We had difficulty training our model
with the standard GAN objective proposed in [7]. In the next two sections we define the architecture
of our generator and discriminator.

A.1 CPPN Generator

We define a CPPN function C that takes as input two coordinates x, y and a latent vector z and
outputs an RGB color: C(x, y, z) :: (R,R,RNz ) → R3. For simplicity, we assume x, y ∈ (0, 1).
The generated image GR for a given resolution R is defined pixel-wise by a “rendering” function:

GR
ij(z) =

∫ i+1
R

i
R

∫ j+1
R

j
R

C(x, y, z)dxdy (1)

A similar expression can be written for sampling arbitrary image crops. We approximate the inte-
grals with Monte Carlo estimates using a small number of samples for each pixel.

The form of C is similar to an MLP, but in addition to the activation functions typically used in
neural networks we also use trigonometric functions (optionally with learned frequencies), differen-
tiable texture lookups, x2, and abs(x). This parameterization yields an interpretability of sorts. For
example, using square or triangle waves in the generator biases it towards geometric imagery with
sharp edges, and using high-frequency periodic nonlinearities creates images with high-frequency
patterns.

We find that careful normalization in this model is critical for successful training. Straightforward
use of batch normalization [10] is problematic because during training, the inputs x, y, z to our
generator within a given minibatch are not i.i.d. (for example, rendering a 32 × 32 image requires
evaluating the generator 1024 times with the same z value in a single minibatch). We use batch
renormalization [9] which resolves this problem and makes optimization easier.

A.2 Discriminator

We use discriminators based on DCGAN [14] but replace batch normalization with layer normal-
ization as in [8]. GANs generators are typically trained to approximate a single data distribution,
but in this work we use multiple discriminators (trained on different, sometimes incompatible, dis-
tributions) to independently control the structure of our generated images at different scales. For
example, we can enforce that our generator generates images which look like natural scenes at low
resolution but look like a pattern of circles at high resolutions. To do this, we train one discrimi-
nator on natural scenes and large-scale generations and another on circle patterns and small-scale
generations and train the generator to minimize both discriminators’ value functions.

B Optimization challenges

We found WGAN-GP [8] and Adam [11] made stable training of our model substantially easier.
Additionally, when rendering we must approximate an integral over color in a pixel. When this pixel
itself contains high frequency texture, these estimates will not only be wrong, but the gradients will
be high variance, which makes learning hard.

Due to these optimization issues, we are unable to reach the same visual quality of existing convo-
lution transposed models even after millions of steps of training. We believe it is possible to reach
this level of performance but modifications to the underlying architectures will be needed.
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