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Abstract

We introduce a computational design workflow based on training examples: Gener-
ative Embedded Mapping Systems (GEMS). GEMS enable a designer to leverage
embedded spaces to provide parametric systems with automatic mappings to future
input data. Instead of specifying a rule-based system for mapping data based on
predefined attributes, designers provide parameter values across a set of training
examples. These training values serve as anchor points bridging a parameter and
embedding space. Settings for new data can then be extrapolated from known pairs.
A Neural Caricature application is examined as an example implementation of this
workflow. The Neural Caricature architecture is more modular, upgradable, and
can capture more nuance than systems using more traditional representation based

mappings.

Figure 1: Neural Caricature examples: Matrix of
solutions from five different students applied to
four images. Each row represents a unique carica-
ture system applied to an input photo containing
one, two, four, or ten faces. Some extrinsic set-
tings are provided by facial landmarks, such as
position and scale of the face. Other variations are
driven from the mapping to the embedded space.
In practice, these mappings have been shown to
capture qualities such as gender, skin tone, and
facial expression. The designer provides settings
for sample inputs and need not consider any of
these named attributes explicitly.

Figure 2: Neural Caricature workflow: Designer
creates a parametric system for representing a face
(in this case, as a robot). Parameters to the system
are provided which match a set of training images
that can be paired with vectors in an embedded
space (green dots). When the system later encoun-
ters new input images, parameters can be inferred
by similarly mapping the new image to a vector in
the embedded space (red dot) and then interpolat-
ing the parameter values from nearest neighbors.
The types and quality of inferences available will
depend on the nature of the embedded space and
the training data provided.
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1 Introduction

Modern graphic design includes the use of algorithms to navigate design spaces, a design practice
called computational or parametric design (Madsen 2017). We have developed a workflow for
applying settings to a parametric design that balances rule based development of the parametric space
with example based exploration of mappings to real world data. We introduce a Neural Caricature
system as our first instantiation of this workflow and propose how the system could be generalized to
other applications.

2 Neural Caricature

Neural Caricature is a system of replacing faces in images with graphics based on parametric designs.
In addition to facial landmarks which provide properties of the face such as position, scale, and
orientation, our system utilizes a mapping to a neural embedded space to capture the intrinsic facial
qualities such as skin tone, gendered appearance, and emotive expression. The combined effect is
demonstrated in Figure 1. More information about our Neural Caricature system is available onlineﬂ

2.1 Workflow

In the previous era of Artificial Intelligence, it was common to start a problem by addressing the
knowledge representation necessary to codify the domain. Similarly, mappings in computational
design are often driven by a set of explicit attributes chosen by the designer to serve as adjustable
parameters for applying variation. For parametric faces, characteristics might be hair color, nose
length, or eye shape.

Neural Caricature breaks this representation based workflow by asking the designer to instead attend
to two interlocking tasks: (1) designing a parametric system with a distribution of possibilities (2)
specifying a set of specific values in this system which best map to known sample inputs (Figure
2). The designer provides a mapping from a set of training face images to specific matching values.
Because these face images can be mapped to neural face embeddings, they provide points of reference
for images outside the training set; an explicit ontology of attributes is not required.

2.2 Modularity

In the Neural Caricature system, a designer’s work is complete when the generative system has
been codified and the parameter values have been provided for a set of training examples. However
the architecture is modular, and the initial mapping can improve subsequent to this work without
adjusting the generative system or revisiting training values.

One method of improvement is swapping out the entire embedded space. We have tested a number of
popular face embeddings including dlib (King 2009), vgg-face (Parkhi 2015), and FaceNet (Schroff
2015). These are orthogonal to the rest of the system, and so can be swapped out in order to capture
different sets of qualities or even "upgraded" at a future time as new facial embedding systems are
developed - without any modification to the original system. Similarly, the method of performing the
mapping across embedded space and parameter space can be changed without altering the designer’s
original code. In our system, we use interpolation to perform a weighted average across a small set of
nearest neighbors. Another option would be to use nearest neighbor alone which would only allow
value combinations explicitly considered together at design time.

3 GEMS Architecture

Various structured embedded spaces in machine learning could also serve as flexible knowledge
representations for computational design. The GEMS architecture provides a machine learning
approach to computational design that offers an example based workflow and software engineering
modularity. We are also investigating adapting the GEMS architecture to other domains such as word
meaning (Mikolov 2013), product search (Van Gysel 2016), and 3D object shapes (Wu 2016).

"https://vusd.github.io/gems/
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