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1 Introduction

The automatic generation of anime characters offers an opportunity to bring a custom
character into existence without professional skill. Besides, professionals may also take
advantages of the automatic generation for inspiration on animation and game character
design. however results from existing models [15, 18, 8, 22, 12] on anime image generation
are blurred and distorted on an non-trivial frequency, thus generating industry-standard
facial images for anime characters remains a challenge. In this paper, we propose a model
that produces anime faces at high quality with promising rate of success with three-fold
contributions: A clean dataset from Getchu, a suitable DRAGAN[10]-based SRResNet[11]-
like GAN model, and our general approach to training conditional model from image with
estimated tags as conditions. We also make available a public accessible web interface.

2 Dataset Construction and Generative Model

We propose to use a consistent, clean, high-quality anime dataset collected from from
Getchu, a website for Japanese games (process detailed in Appendix A). The generation
of images with customization requires categorical metadata of images in priors as attributes
along with noise. Since Getchu does not provide such metadata, we use Illustration2Vec[20],
a CNN-based tool for anime illustrations that serves as attribute estimation. We show the
details of attribute estimation with its statistics and visualization in Appendix B.
Generative Adversarial Networks (GAN) [5] are implicit generative models leading to the
impressive results. However it is notoriously hard to train properly GAN and several meth-
ods have been proposed to address this issue [1, 3, 2, 13, 4, 6, 4, 19, 10, 16]. Here, we use
DRAGAN [10] as GAN model which are fast and stable under several network architecture.
With it we successfully train the DRAGAN with a SRResNet-like generator. Inspired by
ACGAN [17], we utilize the attributions by feeding them along with noise vector and add
a multi-label classifier on the top of discriminator for reconstructing the attributions. The
network architecture, loss function and training details can be found in Appendix C.

3 Generated Images

We highlights some high-resolution (256 by 256) images generated from our model. Details
of protocol and more examples can be found in Appendix D.
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Randomly Generated Examples: Figure 1 shows images generated from our model
where both noise and attributes are randomly sampled.
Generated Examples with Fixed Noise: In Figure 2 we show that by fixing the random
noise part and sampling random attribution, the model generates images have similar major
visual features like face shapes and directions, an evidence of the generalization ability.
Generated Examples with Fixed attribution: In Figure 3 we show generated images
from fixed attribution and randomly noise. The model here generates images with desired
attributions but with different, variant visual features.
Interpolation between images: In Figure 4 we show the interpolation between two sets
of randomly selected features. It shows that attributes, like noise are meaningful under the
continuous setting.

Figure 1: Generated samples with random prior.

Figure 2: Generated images with fixed noise part and random attributes.

Figure 3: Generated images with fixed conditions (silver hair, long hair, blush, smile, open
mouth, blue eyes) and random noise part.

Figure 4: Interpolation between images.

4 Analysis, Public Accessible Interface and Acknowledgement

For quantitively evaluating our generate examples, we conduct attribute precision (Ap-
pendix E), FID evaluation (Appendix F) and nearest training examples (Appendix G) that
shows the superiority of our model over DCGAN baseline. In order to make our model more
accessible, we build a website interface1 for open access (Appendix I).
This paper was first presented as a Doujinshi in Comiket 92, summer 2017 (三⽇⽬東ウ 05a).
The work is done when Yanghua Jin works as a part-time engineer in Preferred Networks,
Japan. Special thanks to Eiichi Matsumoto, Taizan Yonetsuji, Saito Masaki, Kosuke Nakago
from Preferred Networks for insightful directions and discussions.

1http://make.girls.moe
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Appendix
A Image Collection

Figure 5: Sample Getchu page and the detection result (http://www.getchu.com/soft.
phtml?id=933144). Red line indicate the original bounding box and blue line indicate the
scaled bounding box. Copyright: Frontwing, 2017

Getchu2 is a website providing information and selling of Japanese games, for which there
are character introduction sections with standing pictures (⽴ち絵). Figure 5 shows one
sample character introduction from the site. These images are diverse enough since they
are created by illustrators with different styles for games in a diverse sets of theme, yet
consisting since they are all belonging to domain of character images, are in descent quality,
and are properly clipped/aligned due to the nature of illustration purpose. Because of these
properties, they are suitable for our task.
Our collection of images consists of the following steps. First we execute the following SQL
query on ErogameScape’s Web SQL API page3 to get the Getchu page link for each game:

SELECT g.id , g.gamename , g.sellday ,
’www. getchu .com/soft.phtml?id=’ || g. comike as links

FROM gamelist g
WHERE g. comike is NOT NULL
ORDER BY g. sellday

Then we download images following returned list of urls from the SQL query, and apply
lbpcascade animeface4, an anime character face detector, to each image and get bounding
box for faces. We observe that the default estimated bounding box is too close to the face
to capture complete character attributesincluding hair length and hair style, so we zoom
out the bounding box by a rate of 1.5x. The difference can be observed in Figure 5. Finally,
from 42000 face images in total from the face detector, we manually check all anime face
images and remove about 4% false positive and undesired images.

B Tag Estimation

To overcome the limitation that images collected from Getchu are without any tag, we use
Illustration2Vec[20], a pre-trained5 CNN-based tool for (noisy) estimating tags of anime
illustrations. Given an anime image, this network can predict probabilities of belonging
to 512 kinds of general attributes (tags) such as “smile” and “weapon”, among which we
select 34 related tags suitable for our task. We show the selected tags and the number of
dataset images corresponded to each estimated tag in Table 1. For set of tags with mutual
exclusivity (e.g. hair color, eye color), we choose the one with maximum probability from the

2www.getchu.com
3http://erogamescape.dyndns.org/~ap2/ero/toukei_kaiseki/sql_for_erogamer_form.php
4https://github.com/nagadomi/lbpcascade_animeface
5Pre-trained model available on http://illustration2vec.net/
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blonde hair brown hair black hair blue hair pink hair purple hair green hair
4991 6659 4842 3289 2486 2972 1115

red hair silver hair white hair orange hair aqua hair gray hair long hair
2417 987 573 699 168 57 16562

short hair twintails drill hair ponytail blush smile open mouth
1403 5360 1683 8861 4926 5583 4192

hat ribbon glasses blue eyes red eyes brown eyes green eyes
1403 5360 1683 8861 4926 5583 4192

purple eyes yellow eyes pink eyes aqua eyes black eyes orange eyes
4442 1700 319 193 990 49

Table 1: Number of dataset images for each tag

network as the estimated tag. For orthogonal tags (e.g. “smile”, “open mouth”, “blush”),
we use 0.25 as the threshold and estimate each attribute’s presence independently.

Figure 6: t-SNE visualization of 1500 dataset images. A clustering in terms of similar
attributes can be observed in close-up views.

We would like to show the image preparation and the performance of tag estimation through
visualization. As an approximation, we apply the Illustration2Vec feature extractor, which
largely shares architecture and weights with Illustration2Vec tag estimator, on each image
for a 4096-dimension feature vector, and project feature vectors onto a 2D space using t-
SNE[14]. Figure 6 shows the t-SNE result of 1500 images sampled from the dataset. We
observe that character images with similar visual attributes are placed closely. Due to the
shared weights, we believe this also indicates the good performance in tag estimator.

C Model Details

C.1 Network Architecture

The generator’s architecture is shown in Figure 7, which is a modification from SRRes-
Net[11]. The model contains 16 ResBlocks and uses 3 sub-pixel CNN[21] for feature map
upscaling. Figure 8 shows the discriminator architecture, which contains 10 ResBlocks in
total. All batch normalization layers are removed in the discriminator, since it would bring
correlations within the mini-batch, which is undesired for the computation of the gradient
norm. We add an extra fully-connected layer to the last convolution layer as the attribute
classifier. All weights are initialized from a Gaussian distribution with mean 0 and standard
deviation 0.02.

5



Figure 7: Generator Architecture

Figure 8: Discriminator Architecture

C.2 Loss Function

The loss function is described as following:

Ladv(D) = −Ex∼Pdata
[logD(x)]− Ex∼Pnoise,c∼Pcond

[log(1−D(G(z, c)))]

Lcls(D) = Ex∼Pdata
[logPD[labelx|x]] + Ex∼Pnoise,c∼Pcond

[log(PD[c|G(z, c)])]

Lgp(D) = Ex̂∼Pperturbeddata
[(||∇x̂D(x̂)||2 − 1)2]

Ladv(G) = Ex∼Pnoise,c∼Pcond
[log(D(G(z, c)))]

Lcls(G) = Ex∼Pnoise,c∼Pcond
[log(PD[c|G(z, c)])]

L(D) = Lcls(D) + λadvLadv(D) + λgpLgp(D)

L(G) = λadvLadv(G) + Lcls(G)

where Pcond indicates the prior distribution of assigned tags. λadv, λgp are balance factors
for the adversarial loss and gradient penalty respectively.

C.3 Training details

We find that the model achieve best performance with λadv equaling to the number of
attributes, as Zhou et al.[23] gives a detailed analysis of the gradient in the condition of
ACGAN. Here, we set λadv to 34 and λgp to 0.5 in all experiments. All models are optimized
using Adam optimizer[9] with β1 equaling 0.5. We use a batch size of 64 in the training
procedure. The learning rate is initialized to 0.0002 and exponentially decease after 50000
iterations of training.
We train our GAN model using only images from games released after 2005 and with scaling
all training images to a resolution of 128*128 pixels. This gives 31255 training images in
total.
we use the following simple strategy to sample related attributes for the noise. For the
categorial attributes (hair and the eye color), we randomly select one possible color with
uniform distribution. For other attributes, we set each label independently with a probability
of 0.25.
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D More Generated Images

Figure 9 shows more images generated from our model. Figure 10 is an example of fixing the
random noise part and sampling random attributes, where the model can generate images
have similar major visual features. In sampling random attributes, we use the following
simple strategy: For the categorial attributes (hair and the eye color), we randomly select
one possible attribute uniformly. For other attributes, we set each label independently with
a probability of 0.25.

Figure 9: Generated samples with random noise and attributes.

We empirically observe that the random noise part heavily inference the quality of the final
result. Some noise vector can give good samples no matter what conditioned on, while
some other noise vectors are easier to produce distorted images. As Table 1 states, labels
are not evenly distributed in our training dataset, which results that some combinations of
attributes cannot give good images. In Figure 11, (a)(b) are generated with well learned
attributes like “blonde hair”, “blue eyes”. On contrast, (c)(d) are associated with “glasses”,
“drill hair”, which is not well learned because of the insufficiency of corresponding training
images. All characters in (a)(b) appear to be attractive, but most characters in (c)(d) are
distorted.
We also show more interpolations in Figure 12. Although label controlling variables are
assigned with discrete values in the training stage, the result shows that those discrete
attributes are still meaningful under the continuous setting.

7



Figure 10: Generated images with fixed noise and random attributes.

E Attribute Precision

blonde hair brown hair black hair blue hair pink hair purple hair green hair
1.00 1.00 1.00 0.70 0.80 0.75 0.90

red hair silver hair white hair orange hair aqua hair gray hair long hair
0.95 0.85 0.60 0.65 1.00 0.35 1.00

short hair twintails drill hair ponytail blush smile open mouth
1.00 0.60 0.20 0.45 1.00 0.95 0.95
hat ribbon glasses blue eyes red eyes brown eyes green eyes
0.15 0.85 0.45 1.00 1.00 1.00 1.00

purple eyes yellow eyes pink eyes aqua eyes black eyes orange eyes
0.95 1.00 0.60 1.00 0.80 0.85

Table 2: Precision of each label

To evaluate how each tag affect the output result, we measure the precision of the output
result when the certain label is assigned. With each target, we fix the target label to true,
and sample other labels in random. For each label, 20 images are drawn from the generator.
Then we manually check generated results and judge whether output images behave the
fixed attribute we assigned. Table 2 shows the evaluation result. From the table we can see
that compared with shape attributes(e.g. “hat”, “glasses”), color attributes are easier to

8



(a) (b)

(c) (d)

Figure 11: Generated images with random noise and following fixed attributes: (a) blonde
hair, twintails, blush, smile, ribbon, red eyes (b) silver hair, long hair, blush, smile, open
mouth, blue eyes (c) aqua hair, long hair, drill hair, open mouth, glasses, aqua eyes (d)
orange hair, ponytail, hat, glasses, red eyes, orange eyes

learn. Notice that the boundary between similar colors like “white hair”, “silver hair”, “gray
hair ” is not clear enough,. Sometimes people may have troubles to classify those confusing
colors. This phenomenon lead to low precision scores for those attributes in our test.
Surprisingly, some rare color attributes like “orange eyes”, “aqua hair”, “aqua eyes” have a
relative high precisions even though samples containing those attributes are less than 1% in
the training dataset. We believe visual concepts related to colors are simple enough for the
generator to get well learned with a extremely small number of training samples.
On contrast, complex attribute like “hat”, “glasses”, “drill hair” are worst behaved at-
tributes in our experiments. When conditioned on those labels, generated images are often
distorted and difficult to identify. Although there are about 5% training samples assigned
with those attributes, the complicated visual concept they implied are far more accessible
for the generator to get well learned.

F FID Evaluation

One quantitative evaluation method for GAN model is Fréchet Inception Distance (FID) pro-
posed by Heusel et al.[7]. To calculate the FID, a pre-trained CNN(Inception model) is used
to extract vision-relevant features from both real and fake samples. The real feature distri-
bution and the fake feature distribution are approximated with two Gaussian distributions.
Then, Fréchet distance(Wasserstein-2 distance) is calculated between two distributions and
serve the results as a measurement of the model quality.
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Figure 12: Interpolations where samples in the first column and the last columns are ran-
domly generated under different combinations of conditions and samples between them are
result of interpolated latent points.

The Inception model trained on ImageNet is not suitable for extracting features of anime-
style illustrations, since there is no such images in the original training dataset. Here, we
replace Inception model with Illustration2vec feature extractor model for better measure-
ment of visual similarities between generated images and real images.

Model Average FID MaxFID-MinFID
DCGAN Generator+DRAGAN 5974.96 85.63

Our Model 4607.56 122.96

Table 3: FID of our model and baseline model

To evaluate the FID score for our model, we sample 12800 images from real dataset, then gen-
erate a fake sample by using the corresponding conditions for each samples real images. After
that we feed all images to the Illustation2vec feature extractor and get a 4096-dimension
feature vector for each image. FID is calculated between the collection of feature vectors
from real samples and that from fake samples.
For each model, we repeat this process for 5 times and measure the average score of 5 FID
calculation trails. Table 3 shows the result comparing our model with the baseline model.
We observe that our model can achieve better FID performance evenly with less weight
parameters. Also in Figure 13 we trace the FID change in training.

G Nearest Image in Training Set

We would like to know whether our model learns to cheat by generating images in the
training set. In Figure 14 we show randomly generated examples and their nearest images
in training set. It can be shown that our model learns to produce images with new visual
features unseen in the training set, while incorporating the abstract concepts in terms of
attributes.

10



Figure 13: FID decrease and converge to a certain value during the training procedure

Figure 14: Generated images and their nearest image in training set. In each row, on the left
we show a randomly generated images, and on the right we show a list of its nearest images
in the training set, measured by decreasing L2 distance on features from Illustration2Vec
feature extractor. Our model learns to incorporate abstract concepts in terms of attributes
(hair style, hair color, etc.) into new, unseen visual features (facial expressions, etc.)

11



H Evolution of Anime Characters

As an extra experiment, we add the releasing year information as another attribute to the
model. Since the main stream of popular anime character styles is continuous evolving,
adding year label can help the model catch the prevalent style in each year. Predicting the
future of anime character styles is also possible by adjusting the corresponding input value.
We made two videos for better demonstrating the result6 7.

Figure 15: The leftmost column indicates generated images conditioned on year 2003, and
the rightmost column indicates generated images conditioned on year 2017.

I Public Accessible Interface

We impose WebDNN8 and convert the trained Chainer model to the WebAssembly based
Javascript model. WebGL and WebGPU based computation models are also accessible when
clients meet requirements. We observe that the inference procedure can be more than 100
times faster by enabling GPU acceleration. The web application is built with React.js.

6https://www.youtube.com/watch?v=WR8XnX6W8Bk
7https://www.youtube.com/watch?v=dClVF_X5PMU
8https://mil-tokyo.github.io/webdnn/
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Keeping the size of generator model small would be a great benefit when hosting a web
browser based deep learning service. This is because user are required to download the
model before the computation every time, bigger model results much more downloading
time which will affect the user experience. Replacing the DCGAN generator by SRResNet
generator can make the model 4x smaller, so the model downloading time can be reduced
by a large margin.
We details the running time in Table 4. From which we believe that the our support for
multiple client-side browsers generally results in acceptable running time and allows smooth
user experience, while we also make use of state-of-the-art technology (WebGPU) when it
is applicable as a proof-of-concept for next-generation user experience.

Processor Operation System Web Browser Execution Time (s)
I7-6700HQ macOS Sierra Chrome 59.0 5.55
I7-6700HQ macOS Sierra Safari 10.1 5.60
I5-5250U macOS Sierra Chrome 60.0 7.86
I5-5250U macOS Sierra Safari 10.1 8.68
I5-5250U macOS Sierra Firefox 34 6.01

Intel HD Graphics 6000 macOS Sierra Safari 11.0(WebGPU) <0.10
Intel HD Graphics 6000 macOS Sierra Chrome 60.0 (WebGL) 0.42

I3-3320 Ubuntu 16.04 Chromium 59.0 53.61
I3-3320 Ubuntu 16.04 Firefox 54.0 4.36

iPhone 7 Plus iOS 10 Chrome 4.82
iPhone 7 Plus iOS 10 Safari 3.33
iPhone 6s Plus iOS 10 Chrome 6.47
iPhone 6s Plus iOS 10 Safari 6.23
iPhone 6 Plus iOS 10 Safari 11.55

Table 4: Approximate inference time on several different environments.
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