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Abstract

We present ObamaNet, the first architecture that takes any text as input and
generates both the corresponding speech and synchronized photo-realistic lip-sync
videos. Contrary to other published lip-sync approaches, ours is only composed
of fully trainable neural modules and does not rely on any traditional computer
graphics methods. More precisely, we use three main modules: a text-to-speech
network based on Char2Wav, a time-delayed LSTM to generate mouth-keypoints
synced to the audio, and a network based on Pix2Pix to generate the video frames
conditioned on the keypoints.

1 Introduction

There is currently extensive research on machine learning approaches to generate images (Isola et al.
(2016)). In parallel, there has been significant progress in speech synthesis (Sotelo et al. (2017)).
Nevertheless very little work attempts to model both modalities at the same time. In our work, we
show that we can combine some of these recently developed models to generate artificial videos of a
person reading aloud an arbitrary text. Our model can be trained on any set of close shot videos of a
person speaking, along with the corresponding transcript. The result is a system that generates speech
from an arbitrary text and modifies accordingly the mouth area of one existing video so that it looks
natural and realistic. A video example can be found there: http://ritheshkumar.com/obamanet

Although we showcase the method on Barack Obama because his videos are commonly used to
benchmark lip-sync methods (see for example Suwajanakorn et al. (2017)), our approach can be used
to generate videos of anyone provided the data is available.

2 Related Work

Recently, significant progress in the generation of photo-realistic videos have been made (Thies et al.,
2016). In particular Karras et al. (2017) have tried to generate facial animations based on audio. The
work by Suwajanakorn et al. (2017) is the closest to ours, yet we have two important differences.
First, we have a neural network instead of a traditional computer vision model. Second, we add a
text-to-speech synthesizer in order to have a full text-to-video system.

Figure 1: Flow diagram of our generation system.
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3 Model Description

3.1 Text-to-speech system

Figure 2: Keypoint Generation Network

We use the Char2Wav architecture (Sotelo et al., 2017) to
generate speech using the input text. We train the speech
synthesis system using the audio extracted from the videos,
along with their corresponding transcripts.

3.2 Keypoint generation

This module predicts the representation of the mouth
shape, given the audio as input. We use spectral features
to represent the audio. To compute the mouth-shape rep-
resentation, we use mouth keypoints extracted from the
face, and normalize the points to be invariant to image size,
face location, face rotation and face size. Normalization
is crucial in the pipeline, as it makes the key-point genera-
tion compatible with any target video. We then apply PCA
over the normalized mouth key-points to reduce the dimen-
sion and to decorrelate the features. We only use the most
prominent principal components as the representation for
mouth shape.

Regarding the network architecture, we adopt the same
as Suwajanakorn et al. (2017): we use an LSTM network
(Hochreiter & Schmidhuber (1997) with time-delay to
predict the mouth shape representation given the audio
features as input.

3.3 Video generation

Figure 3: Video Generation
Network

Our motivation behind the choice of method to perform video gen-
eration is the recent success of pix2pix (Isola et al. (2016)) as a
general-purpose solution for image-to-image translation problems.
This task falls within our purview, as our objective here is to trans-
late an input face image with cropped mouth area, to an output
image with in-painted mouth area, conditioned on the mouth shape
representation.

To avoid explicit conditioning of mouth shape representation in the
U-Net architecture, we implicitly condition by drawing an outline of
mouth on the input cropped image. The network learns to leverage
this outline to condition the generation of the mouth in the output.

We noticed that the keypoints generated by the recurrent network
are consistent across time without abrupt changes. This allowed
us to perform video generation in parallel, by synthesizing each
frame in the video independently across time, given the conditioning
information of the mouth keypoints. We did not need any explicit
mechanism to maintain temporal consistency in the generated frames
of the video.

We trained this network only using L1-loss in pixel-space and found
that this objective is sufficient to learn the in-painting of the mouth
and doesn’t require the extra GAN objective as originally proposed
in pix2pix by Isola et al. (2016).
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4 Supplementary Material

4.1 Dataset

We showcase our approach on videos of ex-President Barack Obama, similar to Suwajanakorn et al.
(2017). We used 17 hours of video footage from his 300 weekly presidential addresses, which have
the benefit to frame the president in a relatively controlled environment, with the subject in the center
of the camera.

4.2 Data Processing

Text to speech We extract the audio from the videos and convert it to 16KHz. We extract vocoder
frames from the audio using the WORLD vocoder, and use the transcript associated with the video to
train the text-to-speech system.

Figure 4: The 68 facial keypoints

Keypoint Generation The data required for the key-
point generation component is a representation of audio
for input, and a representation of mouth shape for the
output.

To compute the mouth shape representation, we extract 68
facial keypoints from each frame of the video. We used the
publicly available dlib facial landmark detector to detect
the 68 keypoints from the image. Sample annotations
performed by the detector are shown in Figure 3.

These keypoints are highly dependent on the face location,
face size, in-plane and out-of-plane face rotation. These
variances are due to varying zoom-levels of the camera,

distance between camera and speaker, and the natural head-motion of the speaker. In an effort to
remove these variances, we first mean-normalize the 68 keypoints with the center of the mouth. This
converts the 68 keypoints into vectors originating from the center of the mouth, thereby making it
invariant to the face location.

To remove the in-plane rotation caused due to head motion, we project the keypoints into a horizontal
axis using rotation of axes.

We make the keypoints invariant to face size, by dividing the keypoints by the norm of the 68 vectors
from the center of the mouth, which serves as an approximation of face size.

Finally, we apply PCA to de-correlate the 20 normalized keypoints (40-D vector). We noticed that
the first 5 PCA-coefficients capture >98% variability in the data.

Video Generation The data required for this component are image pairs, where the input face
image is cropped around the mouth area and annotated with the mouth outline and the output image
is the complete face.

Figure 5: Sample input-output pair for
the in-painting network

For this task, We extract 1 image per second of video for
all 300 videos, extracting keypoints from these images
using the dlib facial landmark detector. We crop the mouth
area from each image using a bounding box around the
mouth keypoints, and the mouth outline is drawn with
keypoints 49-68 using OpenCV. Figure 4 shows a sample
input / output pair.

An important aspect of the video generation process is to
denormalize the generated keypoints from the previous
stage of the pipeline, with the mouth location, size and
rotation parameters of the target video. This ensures that
the rendered mouth is visually compatible with the face in
the target video.

3



References
Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):

1735–1780, 1997.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. arXiv preprint arXiv:1611.07004, 2016.

Tero Karras, Timo Aila, Samuli Laine, Antti Herva, and Jaakko Lehtinen. Audio-driven facial
animation by joint end-to-end learning of pose and emotion. ACM Trans. Graph., 36(4):94:1–
94:12, July 2017. ISSN 0730-0301. doi: 10.1145/3072959.3073658. URL http://doi.acm.
org/10.1145/3072959.3073658.

Jose Sotelo, Soroush Mehri, Kundan Kumar, Joao Felipe Santos, Kyle Kastner, Aaron Courville, and
Yoshua Bengio. Char2wav: End-to-end speech synthesis. 2017.

Supasorn Suwajanakorn, Steven M Seitz, and Ira Kemelmacher-Shlizerman. Synthesizing obama:
learning lip sync from audio. ACM Transactions on Graphics (TOG), 36(4):95, 2017.

J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and M. Nießner. Face2face: Real-time face
capture and reenactment of rgb videos. In Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 2016.

4

http://doi.acm.org/10.1145/3072959.3073658
http://doi.acm.org/10.1145/3072959.3073658

	Introduction
	Related Work
	Model Description
	Text-to-speech system
	Keypoint generation
	Video generation

	Supplementary Material
	Dataset
	Data Processing


