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Abstract

SOMNIA is a software tool for creating and displaying continually evolving
abstract textures in real time. Based on the Self-Organizing Map neural network,
SOMNIA enables both the visualization of the state of the network as it trains as
well as the interactive manipulation of the network’s hyperparamters.

1 Introduction

A challenge that neural network-based tools used for generative art and music have is the problem of
intentionality. The intentionality of the director of an adaptive system like neural networks is often in
the form of hyperparameter selection followed by manual curation of model outputs after training.
Unfortunately, it may not be apparent until after a training run has completed that the hyperparameter
choices made produced acceptable outputs. It is also often not clear how to achieve desired changes
or improvements in the model output results — instead the creator must conduct hyperparameter
sweeps, then continually evaluate the output until the model produces something acceptable.

SOMNIA (Self-Organizing Maps as Neural Interactive Art) is a real-time generative texture method
based on the Self-Organizing Map (SOM) (Kohonen|(1998)); Du and Swamy| (2013))) neural network
model.

2 Self-Organizing Maps

First developed by Kohonen, the SOM is an unsupervised neural network-based clustering method
inspired by the topological ordering of neuron responses in the brain (Kohonen|(1998))). In SOMs,
neurons are defined in an n-dimensional grid, where each neuron n not only contains an internal
weight w,,, it also has a fixed location in the grid c,,.

The network is trained using a competitive (winner-take-all) approach as follows. First, a sample
input x is presented to the network. The Euclidean distance between x and each neuron’s weight in
the SOM is computed, with the neuron closest to the input declared the best matching unit, bmu.

bmu = arg min||z — wg]|.
k

The weights of every neuron in the SOM layer are then updated according to the Kohonen learning
rule:
wi(t +1) = wi(t) + ah(t, [comu — cill),

where « is the learning rate and £ is the neighborhood function. The neighborhood function produces

an activation value dependent both on the current step ¢ of the training process and the Euclidean
distance between a a particular neuron and the best matching unit within the SOM grid. Choices for
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h() can be rectangular windows, Gaussians or difference of Gaussian for an on-center, off-surround
effect. Typically a radius is also defined in which an neuron falling outside the radius of effect will
have no impact from the training step.

3 SOMNIA

Figure 1: The state of a SOM layer at a snapshot in time.

The structural nature of SOMs has made them well-suited for visualization purposes. Using a
mapping function to translate the weights of each neuron to an RGB color value enables a ready
visual representation of where the adapted clusters occur within the SOM layer. In addition to
displaying the final trained network, it is also possible to visualize the adaption of the network
as it trains (2010)). By choosing large SOM layer sizes and no longer constraining
hyperparameters to the realm of dimensionality reduction optimization, this visualization capability
can be adapted to perform iterative generative art.

SOMNIA is a software implementation of this concept. First, a large texture is defined, where each
pixel is assigned a uniformly random RGB value. Each pixel is treated as the weight of a neuron
in the 2D grid. The grid is treated as toroidal, so neighborhood functions are able to wrap around
both axes. A source image is provided as the data source, and each pixel from the source image is
presented one at a time to the SOM network. After the training update, the texture is re-rendered
to the screen to display the new state of the network. The current implementation of SOMNIA is
in Python and uses OpenGL as the visualization runtime. Figure 1 shows the state of a 480x854
SOM layer captured after several training steps that used a difference of Gaussians neighborhood
function with » = 32 and oo = 32. A photograph was used as the source data. Note how the SOM
layer effectively learns to extract the base palette of the source image.

SOMNIA also supports the real-time, manual adjustment of hyperparameters through a physical
interface that is controllable by the director. By exposing control of values such as the learning rate,
neighborhood function properties (e.g. radius, shape, etc), and training behavior, the director is able
to imbue more intentionality into the evolution of the SOM texture. This control is exposed through
integration with MIDI controllers, allowing adjustments to training process using interfaces such
as knobs, pads, and keys. In this way, SOMNIA enables the "performance” of a visual texture in a
similar fashion to performing music.
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