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Abstract

Generative Adversarial Networks (GAN) is a popular method to generate realistic
images. The method is used for creating new designs and artwork. However, it
takes time to generate the desired image because the relationship between the
GAN’s input and output is unclear. The user generally has to try several input
vectors into the GAN in order to obtain the desired output image. In this paper,
we propose a method that can efficiently generate the desired image by applying
sequential line search to the GAN. Using this technique, the user only needs to
manipulate a single slider a few times in order to obtain the desired output image.
The utility of our method is experimented through crowdsourced experiments.

1 Introduction

Generative Adversarial Networks (GAN) [1] has recently gained attention because of their capability
of generating very realistic images. GAN is widely used for creative tasks like creating new designs
and artwork. The problem in using GAN is the uncertainty of the relationship between input and
output. In a typical system, the input is a d-dimensional vector and the output is an image. We
propose the method of applying sequential line search to GAN, in which the user merely needs to
manipulate a single slider to obtain the desired image, as described in Figure 1. This allows the user
to create the desired image quickly. Users can use our method to create artwork.

Figure 1: Summary of the proposed method. Users manipulate a single slider several times in order
to generate the desired image (i.e., to find an optimal d-dimensional input vector).
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2 Related works

Koyama et al. [2] proposed the "sequential line search" method to improve aesthetic characteristics
of images. Using this method, users are required to manipulate a single slider several times in order
to get the desired image appearance, instead of manipulating many parameters like "contrast" or
"brightness". In this paper, we apply the sequential line search method to GAN.

3 Method

The purpose of our proposed method is to identify the best input vector to generate the desired image.
In our proposed method, the user moves a single slider a few times in order to obtain the output image.
The sequential line search consists of 2 steps. 1) In the first step, the user manipulates a slider. The
image changes dynamically as the slider is moved. The user should stop the manipulation at the point
when the generated image is most similar to the user’s desired image. 2) We generate a new single
slider according to the user’s previous choice by using the Bayesian optimization technique. We have
the information of the user’s past action, which indicates that the image the user chose is preferable
over other images (i.e., other points on the slider). With this information, Bayesian optimization is
used to identify which points should be searched next and create a new single slider. Repeating this
process, users can get the desired output. The detailed process is described in the supplementary
material.

4 Experiments

We evaluate our proposed method by crowdsourced experiments. To examine our proposed method’s
utility, we ask users to choose the image they judge to be most similar to a predefined target image for
5 trials. After 5 trials, we calculate the Euclidean distance between the final obtained image and the
target image. We use this distance as an evaluation metric. For the experiments, we use the MNIST
dataset, which consists of handwritten digit data. We train the GAN for the MNIST dataset. Our
method is then compared with "Random" methods where the single slider is generated randomly.

5 Results and Discussion

The result of our experiment is depicted in Table 1. We calculate the Euclidean distance between the
finally obtained image and the target image. We count the number of images under each threshold.
Hence, our proposed method can generate images which are fairly close to what the user has in mind
and we believe artists could use this method as a new creation tool.

Table 1: Results of the crowdsourced experiments. We calculate the Euclidean distance between the
finally obtained image and the target image. We count the number of images under each threshold.

Random method Proposed method
Lower than 6.0 0 1
Lower than 7.0 1 3
Lower than 8.0 2 5
Lower than 9.0 13 20
Larger than 9.0 35 28
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A Supplementary material

A.1 Detail of method

We use the GAN generator G(z) as the image generator where z ∈ Rd is the d-dimensional input
vector and x = G(z) is the output image. Our task is to find the optimal z that generates the desired
image x. The sequential line search process for GAN is as follows.

Firstly we choose 2 random input vectors z1l , z
1
r . Next we generate a single slider whose left endpoint

is z1l and right end point is z1r . An interval point in the slider is represented as z1m = az1l +(1−a)z1r ,
where 0 ≤ a ≤ 1.

When the user manipulates the slider, the image G(zm) is dynamically generated. The user should
stop the slider at the point where the output image is the most similar to the desired image. The point
and image are represented as z1+ and x1

+ = G(z1+) respectively.

After the user chooses a point in the slider, a new single slider will be generated. The left endpoint
z2l in the new slider is the point chosen by the user at the previous trial (i.e., z2l = z1+). The right
endpoint will be decided from the Bradley-Terry-Luce (BTL) model and Bayesian optimization.

A.1.1 BTL model

We use the BTL model to model the user’s preference toward images.

When the user chooses the image xj = G(zj) from the set of images S = {xi|xi = G(zi)}mi=1, we
represent it as zj � S \ zj . The likelihood of the situation is modeled as

P (zj � S \ zj) =
exp(qj/s)∑m
i=1 exp(qi/s)

, (1)

where qi is the user’s preference value toward image xi and zi and s is the scaling parameter.
In our single slider situation, we can consider a slider as the set of a finite number of points.
In the experiments, we noticed that the results were not altered by a change in the number of
points. So we choose the minimal representation where we just use the endpoints zr, zl and the
chosen point z+, thus, S = {zr, zl, z+}. Therefore, at each turn n we can obtain the information
Dn = {zn+ � znl , z

n
r }. Using the information D = [D1,D2, ...,Dn], we will estimate the

preference values q = [q1l , q
1
r , q

1
+, q

2
r , ...]. The estimation method is explained in the next section.

Once we have the estimated preference values q, we can use this for Bayesian optimization, being
able to calculate which points should be searched in the next trial.

A.1.2 Bayesian Optimization

Bayesian optimization used for optimizing the black box function f(z) is as follows:

max
z∈Z

f(z). (2)

Usually, the derivative f
′
(z) cannot be easily obtained and evaluating each point of f(z) is costly.

In this scenario, Bayesian optimization is useful once it indicates which point should be evaluated
next based on the current n observed values. Therefore, optimal points can be efficiently found after
processing a few observations. f is usually modelled as a Gaussian process:

f ∼ GP (mf (z), kf (z, z
′
)), (3)

where mf is a mean function. We assume that mf = 0 because we do not have any domain specific
knowledge. kf is a kernel function:

kf (z, z
′
) = θd+1 exp

{
−1

2

d∑
i=1

(zi − z
′

i)
2

θ2i

}
, (4)
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where θ is a hyperparameter, which is determined by MAP estimation, given the observed dataD.
However, in this paper we predetermined the hyperparameter in advance to reduce computational
complexity.

The predictive distribution of f(z) is a Gaussian distribution and can be calculated analytically. f(z)
is used to construct the acquisition function a(z), which determines the next point that should be
evaluated. Although there are several kinds of acquisition functions, the expected improvement (EI)
is commonly used. The EI function is defined as

a(z) = E [max{f(z)− f+, 0}], (5)
where f+ is the best value among current observed data. We should evaluate z as the point that
maximizes a(z).

In the sequential line search, we use the estimated preference value q towards z as the f(z) and
calculate the acquisition function a(z). Then we obtain the next zEI . Finally, we set zEI as the right
endpoint of the slider.

To perform the search, we need to estimate the preference value q. The parameter can be estimated
through MAP estimation:

qMAP = arg max
q

p(q|D,θ) (6)

= arg max
q

p(D|q,θ)p(q|θ) (7)

= arg max
q

p(D|q)p(q|θ). (8)

The last equation is derived from the idea that, given the preference value q,D and θ are conditionally
independent.

The conditional probability p(D|q) is calculated by the BTL model as

p(D|q) =
∏
n

p(zn+ � znr , znl ). (9)

The conditional probability p(q|θ) is calculated with the GP as

p(q|θ) = N (q;0,K), (10)

where 0 is the mean function andK is the covariance matrix.

The summary of sequential line search for GAN is bellow.

Algorithm 1 Sequential line search for GAN
for n = 1, 2, ... do
qMAP = compute_MAP_estimate(Dn)
zEI = argmaxz a(z)
Create a new single slider with the endopoints znl = zn−1+ , znr = zEI

User manipulates the slider
Dn+1 =Dn ∪ {zn+ � znl , znr }

end for

A.2 Detail of experiments

We use the GAN generator G(z) and train it for the MNIST dataset. We set the dimension of input
vector z as 5 and the dimension of the output image as 28 × 28. We set the hyperparameter of
Bayesian optimization as θi = 0.5(i = 1, ..., d+ 1) and the scaling parameter of the BTL model as
s = 1. We use crowdsourcing to compare our method with the random method. The summary of the
random and proposed methods is described in Table 2.

We used Amazon Mechanical Turk and 48 workers performed the task. Our task is described in
Figure 2.
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Table 2: Comparison of random and proposed method.

Random Proposed
N=1 Two endpoints are randomly chosen Two endpoints are randomly chosen

N=2,3,.. Left endpoint is the previously chosen one Left endpoint is the previously chosen one
Right endpoint is randomly chosen Right endpoint is zEI

Figure 2: Crowdsourced experiment.

A.3 Detail of results

Example of one user’s trial on our proposed method is described in Figure 3. We can observe that the
images generated are similar to the target image.

Figure 3: Example of one user’s trial on our proposed method.
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