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Abstract

A recently published method for audio style transfer has shown how to extend the
process of image style transfer to audio. This method synthesizes audio "content"
and "style" independently using the magnitudes of a short time Fourier transform,
shallow convolutional networks with randomly initialized filters, and iterative
phase reconstruction with Griffin-Lim. In this work, we explore whether it is
possible to directly optimize a time domain audio signal, removing the process of
phase reconstruction and opening up possibilities for real-time applications and
higher quality syntheses. We explore a variety of style transfer processes on neural
networks that operate directly on time domain audio signals and demonstrate one
such network capable of audio stylization.

1 Introduction

Audio style transfer (1) attempts to extend the technique of image style transfer (2) to the domain of
audio, allowing "content" and "style" to be independently manipulated. Ulyanov et al. demonstrates
the process using the magnitudes of a short time Fourier transform representation of an audio signal
as the input to a shallow untrained neural network, following similar work in image style transfer
(3), storing the activations of the content and Gram activations of the style. A noisy input short time
magnitude spectra is then optimized such that its activations through the same network resemble the
target content and style magnitude’s activations. The optimized magnitudes are then inverted back to
an audio signal using an iterative Griffin-lim phase reconstruction process (4).

Using phase reconstruction ultimately means the stylization process is not modeling the audio signal’s
fine temporal characteristics contained in its phase information. For instance, if a particular content
or style audio source were to contain information about vibrato or the spatial movement or position of
the audio source, this would likely be lost in a magnitude-only representation. Further, by relying on
phase reconstruction, some error during the phase reconstruction is likely to happen, and developing
real-time applications are also more difficult (5), though not impossible (6). In any case, any networks
which discard phase information, such as (5), which build on Ulyanov’s approach, or recent audio
networks such as (7) will still require phase reconstruction for stylization/synthesis applications.

Rather than approach stylization/synthesis via phase reconstruction, this work attempts to directly
optimize a raw audio signal. Recent work in Neural Audio Synthesis has shown it is possible to take
as input a raw audio signal and apply blending of musical notes in a neural embedding space on a
trained WaveNet autoencoder (8). Though their work is capable of synthesizing raw audio from its
embedding space, there is no separation of content and style using this approach, and thus they cannot
be independently manipulated. However, to date, it is not clear whether this network’s encoder or
decoder could be used for audio stylization using the approach of Ulyanov/Gatys.

To understand better whether it is possible to perform audio stylization in the time domain, we
investigate a variety of networks which take a time domain audio signal as input to their network:
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using the real and imaginary components of a Discrete Fourier Transform (DFT); using the magnitude
and unwrapped phase differential components of a DFT; using combinations of real, imaginary,
magnitude, and phase components; using the activations of a pre-trained WaveNet decoder (9; 8); and
using the activations of a pre-trained NSynth encoder (8). We then apply audio stylization similarly
to Ulyanov using a variety of parameters and report our results.

2 Experiments2

We explore a variety of computational graphs which use as their first operation a discrete Fourier
transform in order to project an audio signal into its real and imaginary components. We then explore
manipulations on these components, including directly applying convolutional layers, or undergoing
an additional transformation of the typical magnitude and phase components, as well as combinations
of each these components. For representing phase, we also explored using the original phase, the
phase differential, and the unwrapped phase differentials. From here, we apply the same techniques
for stylization as described in (1), except we no longer have to optimize a noisy magnitude input,
and can instead optimize a time domain signal. We also explore combinations of using content/style
layers following the initial projections and after fully connected layers.

We also explore two pre-trained networks: a pre-trained WaveNet decoder, and the encoder portion of
an NSynth network as provided by Magenta (8), and look at the activations of each of these networks
at different layers, much like the original image style networks did with VGG. We also include
Ulyanov’s original network as a baseline, and report our results as seen through spectrograms and
through listening. Our code is also available online3.

3 Results

Only one network was capable of producing meaningful audio reconstruction through a stylization
process where both the style and content appeared to be retained: including the real, imaginary,
and magnitude information as concatenated features in height and using a kernel size 3 height
convolutional filter. This process also includes a content layer which includes the concatenated
features before any linear layer, and a style layer which is simply the magnitudes, and then uses
a content and style layer following each nonlinearity. This network produces distinctly different
stylizations to Ulyanov’s original network, despite having similar parameters, often including quicker
and busier temporal changes in content and style. The stylization also tends to produce what seems
like higher fidelity syntheses, especially in lower frequencies, despite having the same sample rate.
Lastly, this approach also tends to produce much less noise than Ulyanov’s approach, most likely due
to errors in the phase reconstruction/lack of phase representation.

Every other combination of input manipulations we tried tended towards a white noise signal and did
not appear to drop in loss. The only other network that appeared to produce something recognizable,
though with considerable noise was using the magnitude and unwrapped phase differential information
with a kernel size 2 height convolutional filter. We could not manage to stylize any meaningful
sounding synthesis using the activations in a WaveNet decoder or NSynth encoder.

4 Discussion and Conclusion

This work explores neural audio style transfer of a time domain audio signal. Of these networks, only
two produced any meaningful results: the magnitude and unwrapped phase network, which produced
distinctly noisier syntheses, and the real, imaginary, and magnitude network which was capable of
resembling both the content and style sources in a similar quality to Ulyanov’s original approach,
though with interesting differences. It was especially surprising that we were unable to stylize with
NSynth’s encoder or decoder, though this is perhaps to due to the limited number of combinations of
layers and possible activations we explored, and is worth exploring more in the future.

2Further details are described in the Supplementary Materials
3https://github.com/pkmital/neural-audio-style-transfer
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5 Supplementary Material

5.1 Input Data

Each of the shallow untrained networks we used take as input a raw audio signal sampled at 22050 Hz with
a frame size of 2048 samples, an alpha of 0.01, and use 150 iterations of the Adam optimizer. We explored
manipulations in sample rate including [44100, 22050, and 16000]. For frame size (DFT size was always set to
half frame size with no padding or centering), we explored [1024, 2048, 4096, 8192], with hop sizes of [128,
256, 512]. The resulting projections from a discrete Fourier basis set were then sliced to half width to remove
their symmetric projections.

For the NSynth and WaveNet networks, we used the native sampling rate they were trained on, 16000 Hz.
For the shallow untrained networks, we explored a combination of networks that varied in their initial input
processing, depth, and the number layers and information we used for content and stylization. We tested
networks which incorporated the real, imaginary, magnitude, and phase information of an audio source signal’s
DFT, as computed with a computational graph capable of automatic differentiation. This enabled us to apply
stylization by optimizing an input noise signal, while keeping the rest of the network untrained.

5.2 Network

Ulyanov’s original stylization network uses depth-wise convolution as the first layer operating on the magnitudes.
We employ the same technique here, except using combinations of the real, imaginary, magnitude, and phase
information as input, stacked along the height dimension. For kernel sizes, we tried a variety of widths, including
[4, 8, 16], and for heights, depending on the number of components included we tried [1, H], where H is the
total number of components included in the model. For instance, for a model incorporating real and imaginary
components, we set H = 2, and stacked the real and imaginary comopnents in rows. For number of layers, we
tried [1, 2, 3]. And finally, for representing phase, we tried the original phase, the phase differential, and the
unwrapped phase differentials. We used a stride of 1 and a ReLu activation for all convolutional layers, and
followed the weight initialization used by Ulyanov’s baseline audio stylization network. Finally, we explored
alphas including [0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001].
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Figure 1: Example synthesis optimizing audio directly with both the source content and style audible.
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