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Abstract

Here, we propose a new approach for modeling conditional probability distributions
of polyphonic music by combining WaveNET and CRF-RNN variants, and show
that this approach beats LSTM and WaveNET baselines that do not take into
account the statistical dependencies between simultaneous notes.

1 Introduction

The history of algorithmically generated music dates back to the musikalisches würfelspiel (musical
dice game) of the eighteenth century. These early methods share with modern machine learning
techniques the emphasis on stochasticity as a crucial ingredient for “machine creativity”. In recent
years, artificial neural networks dominated the creative music generation literature [3]. In several of
the most successful architectures, such as WaveNet, the output of the network is an array that specifies
the probabilities of each note given the already produced composition [3]. This approach tends to be
infeasible in the case of polyphonic music because the network would need to output a probability
value for every possible simultaneous combination of notes. The naive strategy of producing each note
independently produces less realistic compositions as it ignores the statistical dependencies between
simultaneous notes. Earlier work has tackled this problem by using RNN-RBMs on high-dimensional
piano rolls [2] or language models on one-dimensional note events (BachBot1, Polyphony RNN2). In
this paper, we model the dependencies between notes as a conditional random field (CRF), and we
use our new WaveCRF architecture to approximate the joint probabilities using a factorized mean
field approach.

2 Methods

The WaveCRF is a combination of WaveNet [9] and CRF-RNN [10] variants, which models condi-
tional probability distributions of simultaneous notes given their history. The WaveNet component
learns to output both the unary potential and the densely connected pairwise kernels of the CRF
for simultaneous notes at current time points as a function of those at previous time points. The
CRF-RNN component learns to output the mean field approximation of the Gibbs distribution of
the CRF [7] for simultaneous notes at current time points as a function of outputs of the WaveNet
component. Since the mean field approximation of the Gibbs distribution of the CRF factorizes
as a product of conditional probability distributions over simultaneous notes, they can be sampled
independently from one another.

1https://github.com/feynmanliang/bachbot
2https://github.com/tensorflow/magenta/tree/master/magenta/models/polyphony_rnn
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The idea of combining convnets with CRF-RNNs for modeling high-dimensional conditional proba-
bility distributions has already been proposed in the context of semantic segmentation [10]. While
these proposals made it possible to learn unary potentials of CRFs, they relied on either densely
connected but fixed [10] or learnable but sparsely connected [4] pairwise kernels to work around the
limitation of prohibitively large number of potential pairwise connections. The WaveCRF takes this
idea to the context of sequence modeling and formulates it such that it relies on neither fixed nor
sparsely connected pairwise kernels as well as learning all of the terms end-to-end.

3 Results

Everything was implemented with Chainer3 and Cupy4 [8] except for preprocessing, which was
implemented with Magenta5. Our implementation will be made available at https://github.com/
umuguc/WaveCRF.

We evaluated the WaveCRF on the music216 Bach corpus that comprises 404 Bach chorales in
digital sheet music format. We preprocessed the corpus by splitting time changes, quantizing (to
sixteenth note), transposing (up to ± major third) and extracting polyphonic tracks (between five and
32 bars) and encoding as piano rolls. We randomly assigned 90% of the corpus to the training set and
the remaining data to the test set.

The specific WaveCRF that was evaluated comprised a WaveNet component with nine layers and
a CRF-RNN component with one layer, which made five training and 10 test iterations to update
the mean field approximation of the Gibbs distribution of the CRF. The WaveCRF was trained for
predicting simultaneous notes at current time points given preceding five bars by minimizing the
softmax cross entropy loss function with Adam [6].

We also evaluated two baselines that did not model the statistical dependencies between simultaneous
notes. The first baseline comprised only the unary potentials of the WaveNet component of the
WaveCRF. The second baseline comprised an LSTM [5] with four layers. The baselines were trained
and tested similarly to the WaveCRF.

Table 1 shows the quantitative results (i.e., accuracy and loss on the test set) of the WaveCRF and
the baselines. In comparison to the baselines, the WaveCRF had significantly higher accuracy and
lower loss on the test set (p < 0.05, Student’s t-test). The qualitative results of the WaveCRF (i.e.,
example compositions in both digital sheet music format and MIDI format) will be made available at
https://github.com/umuguc/WaveCRF.

Table 1: Quantitative results of the WaveCRF and the baselines. Accuracy is defined as expected
frame-level accuracy [1].

accuracy loss

LSTM 0.361 0.061
WaveNet 0.727 0.028
WaveCRF 0.749 0.026

4 Conclusion

In summary, we proposed the WaveCRF that combines WaveNet and CRF-RNN variants for modeling
conditional probability distributions of simultaneous notes given their history. The WaveCRF achieved
promising results, which warrant further experiments. In the future, we plan to use additional
baselines, encodings and datasets.

3https://chainer.org
4https://cupy.org
5https://github.com/tensorflow/magenta
6https://github.com/cuthbertLab/music21
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